
IO500 @ SC18
Bent, Lofstead, Kunkel, Markomanolis

IO500@SC18; Bent

IO500@SC18; Bent

read | write
disk I/O size ios % cum % | ios % cum %
4K: 13977 100 100 | 6 0 0
8K: 0 0 100 | 4 0 0
16K: 0 0 100 | 18 0 0
32K: 0 0 100 | 24 0 0
64K: 0 0 100 | 12999 96 96
128K: 0 0 100 | 406 3 99
256K: 0 0 100 | 68 0 99
512K: 0 0 100 | 3 0 100

Why IOR Hard Write is Difficult

This data is a histogram of IO sizes from an Lustre OST during the IOR hard test. Because each write is 47K, each will incur
a 4K read due to read-modify-write of that page followed by a 48K write (which shows up in the 64K bucket).

IO500@SC18; Bent

• Firmware engineer: “150 – 160 MB/s”
• Marketer: “200 MB/s”
• Performance engineer: “130 MB/s”
• Salesperson: “100 MB/s”

• User: “Why do I only see 10 MB/s?!?”

• Building balanced systems to improve system efficiency and user
productivity

IO500 | Motivation: “How Fast Does a Disk Drive Go?”

IO500@SC18; Bent

IO500 | A Legitimate Concern About Linpack
“Ideal”
Supercomputer

Flops/watt

* Please do not interpret axes literally.
Just examples illustrating multi-variable complexity.

Storage_bw/mem_cap

L3
_c

ap
ac

it
y/

ne
tw

or
k_

ba
nd

w
id

th

IO500@SC18; Bent

IO500 | A Legitimate Concern About Linpack

Flops/watt

Storage_bw/mem_cap

L3
_c

ap
ac

ity
/n

et
w

or
k_

ba
nd

w
id

th

“Ideal”
Supercomputer

Linpack
Supercomputer

IO500@SC18; Bent

IO500 | A Legitimate Concern About Linpack

Flops/watt

“Ideal”
Supercomputer

Linpack
Supercomputer

Actual
Supercomputers

Storage_bw/mem_cap

L3
_c

ap
ac

ity
/n

et
w

or
k_

ba
nd

w
id

th

IO500@SC18; Bent

IO500 | IO500 Restores Balance

Flops/watt

Storage_bw/mem_bw

L1
_c

ap
ac

ity
/n

et
w

or
k_

bw

“Ideal”
Supercomputer

Linpack
Supercomputer

Actual
Supercomputers

IO500@SC18; Bent

IO500 | IO500 Restores Balance

Flops/watt

Storage_bw/mem_bw

L1
_c

ap
ac

ity
/n

et
w

or
k_

bw

“Ideal”
Supercomputer

Linpack
Supercomputer

Actual
Supercomputers

IO500
Supercomputer

IO500@SC18; Bent

IO500 | IO500 Restores Balance

Flops/watt

Storage_bw/mem_bw

L1
_c

ap
ac

ity
/n

et
w

or
k_

bw

“Ideal”
Supercomputer

Linpack
Supercomputer

Actual
Supercomputers

IO500
Supercomputer

IO500@SC18; Bent

IO500 | IO500 is Balanced

• Hero bandwidth
• Write and read

• Anti-hero bandwidth
• Write and read

• Hero metadata
• Create, stat, delete

• Anti-hero metadata
• Create, stat, read, delete

• And a namespace search
• Search

geometric
mean

metadata
score

geometric
mean

bandwidth
score

geometric
mean

total
score

IO500@SC18; Bent

IO500 | Bounding Box of Expectation

• “We tried 20 years ago. Impossible to create a single representative benchmark.”
• Great point! We won’t try. Our bounding box includes them all.

BOLD CLAIM
IO500 cannot be gamed.

Whatever you do to improve your IO500 score will result in a better storage system for applications.
Prove me wrong. J

IO500 Bounding Box of
Expectation

Best Possible Metadata Rates

Worst Possible Metadata Rates
Best Possible BandwidthWorst Possible Bandwidth

IO500@SC18; Bent

IO500 | Current Status of the Benchmark

• Stonewall makes it easier to run than it was previously
• Importantly captures the straggler effect

• ldiskfs limitation makes mdtest_hard_write difficult
• Mdtest has been modified to address this

• [But doesn’t yet work with stonewall]

• Parallel rm needed for cleanup
• Several other open feature requests
• https://github.com/VI4IO/io-500-dev

IO500@SC18; Bent

IO500 | Thanks for all the submissions!

• 54 new submissions from 19 institutions; up to 67 new submissions

• We can now start doing some analysis!
• [Show stragglers]

Maybe enough for some analysis?

All data is available for analysis.

IO500@SC18; Bent

IO500 | Ten Node Challenge

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

Preliminary Analyses

• Now that we have lots of data, the following slides will attempt some preliminary analyses and suggest
different ways of using IO500 as well

• There are the following sections
• Analysis of the 10 Node Challenge
• Analysis of the Overall Top Five Systems
• Analysis of the Cambridge apples-apples results comparing untuned BeeGFS, untuned Lustre, and tuned Lustre –

highlights also the value of Lustre DNE2
• Analysis of the Exascaler on Google Cloud Platform results showing what happens with different numbers of clients,

metadata servers, and object servers
• Analysis of the straggler effect and whether some filesystems might be less sensitive than others – no spoilers!
• Analysis of degradation from easy to hard and whether some filesystems might be less sensitive than others – no

spoilers!
• Analysis of the JCAHPC results showing the impact of upgrading their IME version
• Analysis of the Nemour results showing the value of using IO500 for regression testing
• Analysis of the IME results further showing the impact of the IME version (maybe)
• A huge set of extra bonus graphs with no analysis – an exercise for the reader!

• Caveats!
• There is probably not enough data to be statistically significant. I might imagine trends that don’t exist.
• Broad claims suggesting filesystem comparisons are probably not valid.
• To any offended file system developers out there, I apologize. Please correct any mistakes and explain any confusion!

IO500@SC18; Bent

Ten Node Challenge
• We introduced a “Ten Node Challenge” this year in an attempt to

encourage small systems to submit
• It was successful; we had 14 submissions!

IO500@SC18; Bent

The overall metadata
score for all 10 Node
Challenge entries.

IO500@SC18; Bent

The overall bandwidth
score for all 10 Node
Challenge entries.

IO500@SC18; Bent

Summit won but WekaIO was a close second!

The overall score for all
10 Node Challenge
entries.

IO500@SC18; Bent

Here we go in-depth into the
top-5 systems in the 10 Node
Challenge: Bandwidths.

IO500@SC18; Bent

A very impressive find score from the
DDN Lustre testbed (DNE2) but not
enough to lift it overall beyond #3.

IO500@SC18; Bent

Summit won even though their
overall bandwidth was only #3
because their metadata was so
much better.

IO500@SC18; Bent

Top Five Overall Systems

• Here we go in-depth into the top five overall systems on the list

IO500@SC18; Bent

Summit crushed the easy
bandwidth but struggled with
hard.

IO500@SC18; Bent

Summit is almost strictly
better for metadata across
the board.

IO500@SC18; Bent

Yet again, Summit wins on the basis of its
metadata score. Even though it crushed
easy bandwidth, the severe degradation in
hard really hurt the overall bandwidth
score.

IO500@SC18; Bent

Some Analysis

• University of Cambridge Data Accelerator submitted three results

• We can look at the value of tuning and the impact of Lustre DNE2 on
mdtest_hard_*

• Fantastic apples-apples comparison on the exact same hardware

IO500@SC18; Bent

As expected, DNE2
improves metadata hard.
But not very much on the
write. Probably they
weren’t using data-on-
metadata . . . Next year!

IO500@SC18; Bent

Maybe next year we can
see how Cambridge tunes
BeeGFS!

IO500@SC18; Bent

The untuned BeeGFS
outperforms on easy
metadata but not on hard.
However, I think
Cambridge only tuned for
hard and not for easy.
Next year!

IO500@SC18; Bent

Pretty similar bandwidths
so yet again the metadata
is the prime driver for the
overall score.

IO500@SC18; Bent

DDN and Google Partnered on Exascaler on
GCP
• Three runs allow us to see the varying affects of changing client

count, MDS count, and OSS count in the Lustre file system

IO500@SC18; Bent

Bandwidth goes up with
clients or OSS or both?
Easy read is an outlier?

IO500@SC18; Bent

More MDS helps
metadata. But maybe not
as much as find would
suggest . . . outlier?

IO500@SC18; Bent

A result where bw
seemed to play a larger
factor in overall score than
metadata

IO500@SC18; Bent

Straggler Analysis
• Reminder of how stonewall works in IO500:

• This is because real codes do fixed amounts of work not
fixed amounts of time

• But stonewall is useful for benchmarking!

• We do the wearout to get a realistic measurement in a
bounded amount of time

• This then effectively measures how balanced a system is.

• In a perfectly balanced system, everyone will do the same
amount of work in the same amount of time and
straggler_effect will be 1

• High straggler_effects might indicate imbalanced systems

stonewall = 300
myunits = 0
timer = now()
while(true)

do_work()
myunits++
break if now()-timer >= stonewall

maxunits=MPI_Reduce(MAX,myunits,COMM_WORLD)
while myunits < maxunits

do_work
myunits++

elapsed = now()-timer
straggler_effect = elapsed / stonewall

Stonewall phase

Wearout phase

IO500@SC18; Bent

Using pandas, sql,
matplotlib, and seaborn
python modules, all
results using stonewall
are grouped by
filesystem and there is
one point for each
result. The boxes show
median, quartiles, and
max-min.

GPFS seems to have the
least imbalance for ior
easy write.

IO500@SC18; Bent

Remember a value of 1
might indicate a
balanced system.

OrangeFS looks great for
balance in
ior_hard_write.

Of course the other
consideration is total
amount of work done.

If ior_hard_write is very
challenging, very little
work might be done and
therefore there might be
less variance than with
ior__easy_write.

However, there are
some points here where
the straggler effect is
much higher than in any
of the ior_easy_write
results…

IO500@SC18; Bent

OrangeFS and GPFS look
pretty balanced for
mdtest_easy_write.

IO500@SC18; Bent

Visually comparing to
the previous graph, it
looks like mdtest_hard is
less likely to incure
imbalance overall than is
mdtest_easy. Across the
board, the straggler
effect is low here.

IO500@SC18; Bent

Degradation: “Measuring the Bounding Box of
Expectation”
• As mentioned in the intro, one possible virtue of a system is to have a

small “Bounding Box of Expectation”
• In other words, the difference between hard and easy is minimal such

that every user of a system has a reasonable expectation of
performance within a small bounds
• This also minimizes the need to tune applications

• In the following graphs, we therefore look at the degradation from
easy to hard

IO500@SC18; Bent

In these graphs,
0% means that
the hard score
was identical to
the easy score. A
high value means
that the hard
score lost
amount amount
of the possible
performance as
measured by
easy.

This graph shows
degradation from
ior_easy_read to
ior_hard_read.
Because IOR
opens with
O_RDONLY, there
shouldn’t be
much locking and
degradation here
should be overall
low. That is not
what we see
however.

IO500@SC18; Bent

As expected, the

log-structure

approach in IME

means very little

performance is

lost from

ior_easy_write to

ior_hard_write.

BeeGFS has an

interesting

spread. Some

great results at

the bottom! But

some bad ones at

the top. The next

slide tries to

figure out why…

IO500@SC18; Bent

Why Does BeeGFS have such a large
degradation spread for ior_write?

Large Spread!
Why?!?!

I don’t know.

K

IO500@SC18; Bent

Reminder: 0% is
the “target” here
as it indicates no
loss from easy to
hard. 100%
would be the
worst case and
indicates that
hard is infinitely
worse than easy.

A negative result
is unexpected
and means that
hard did better
than easy.

The Lustre results
from Cambridge
do have
metadata results
where hard is
better because
they tuned hard
to use DNE2 but
did not tune easy
so easy results
only used one
MDS/MDT.

IO500@SC18; Bent

Same explanation
about Cambridge
Lustre as on
previous slide.

IO500@SC18; Bent

Same explanation
about Cambridge
Lustre as on
previous slide.

IO500@SC18; Bent

JCAHPC

• Use IO500 for regression testing or to check whether a software
upgrade actually improves the system

IO500@SC18; Bent

Upgrading IME
improves
bandwidth! This
is apples-apples
hardware
comparison.

IO500@SC18; Bent

Upgrading IME
improves
metadata except
delete got worse.
Something to
debug . . . Better
in 1.2?

IO500@SC18; Bent

As expected,
overall scores
went up.

Good job IME
developers!

IO500@SC18; Bent

IME Results

• To see whether IME 1.2 further improves over IME 1.1.2, we can
compare the KISTI result to the two JCAHPC results
• Unfortunately this is different hardware so comparison might be

tricky

IO500@SC18; Bent

Except for
ior_hard_read, it
looks like the
expected trend.

IO500@SC18; Bent

Except for
mdtest_hard_read
and
mdtest_easy_write,
it looks like the
expected trend.

IO500@SC18; Bent

Bandwidth went
slightly down but
the improvement
in metadata was
enough to
improve the
overall score.

IO500@SC18; Bent

• There were three new submissions using the WekaIO Matrix filesystem

Weka Results

IO500@SC18; Bent

Nice scaling on the two
weka systems from 10 to
17 clients. Need to dig to
see what was different on
the Penguin system. . .

IO500@SC18; Bent

Aha; fewer servers!

IO500@SC18; Bent

Same graph as two slides
ago; updated to add the
server count to explain
the difference between
the submission from
Penguin and the
submission from WekaIO.

IO500@SC18; Bent

Nice scaling for
queries/reads. Not
surprising to see that
modifications are harder.

IO500@SC18; Bent

Nice scaling from system to
system. As we saw earlier,
seems to help to scale both
clients and servers.

IO500@SC18; Bent

Regression Testing at Nemours

• Nemours also used IO500 to test a system before and after an
upgrade.
• Unfortunately the overall performance went down. Why?
• Noise during testing?
• The upgrade was actual a downgrade?
• The test only used one client so perhaps that’s more of a measure of

the particular client node than of the overall file system?
• More data needed!

IO500@SC18; Bent

IOR easy got
better but hard
got worse.

IO500@SC18; Bent

Not much change
in metadata.

IO500@SC18; Bent

A mixed bag but
overall the score
went slightly
down.

IO500@SC18; Bent

Tons and Tons of Boxplots

• For each metric, all the results grouped by file system
• Also includes an attempted normalization by client count
• Also includes an attempted normalization by total capacity
• Note total capacity is inaccurate!
• io500.sh collects df by calling ‘df’. However, ‘df’ reports in block and different

systems use a different value for block size.
• We need to update io500.sh to pass a flag to ‘df’ to force consistency in the

block size
• More generally we need to scrape more environmental info.
• Feel free to submit patches! J

• Way too many graphs to attempt analysis. Have at ye!

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

IO500@SC18; Bent

See you at ISC’19 for the fourth IO500 List!

