Establishing the 10-500 Benchmark

Julian M. Kunkel*, John Bent, Jay Lofstead®, George S. Markomanolis$,
* DKRZ, T Sandia National Laboratories, Cray, § KAUST Supercomputing Laboratory

Abstract—Benchmarking of HPC storage systems is a complex
task. Parallel I/O is not only influenced by CPU performance for
latency and the networking stack but also on the underlying
storage technology and software stack. With the 10-500, we
have defined a comprehensive benchmark suite that enables
comparison of high-performance storage systems. Similar to the
TOP500 list for compute architectures, I0500 will allow tracking
performance growth over the years and analyze changes in the
storage landscape. The 10-500 will not only provide key metrics
of expected performance, but serve as a repository for foster-
ing sharing best practices within the community. Unlike other
benchmarking efforts, by encouraging “gaming” the benchmark
for the “easy” tests—and requiring disclosure of how these tests
were performed—we can document how to achieve best practices
while avoiding dishonest benchmark results.

I. CHALLENGES AND THE 10-500 APPROACH

The following list stems from the discussion of the bench-
mark suite in smaller groups and meetings around birds-of-
a-feather sessions during the ISC High Performance and the
Supercomputing conference as well as a Dagstuhl workshop.
Additionally, the community ran the suite on several sites,
and we incorporated feedback into the benchmarks to make
them easier to run and more clear. We settled on a collection
of “hard” tests with preconfigured parameters designed to
show worst-case scenarios. A second set of “easy” tests are
completely up to the user and should show the potential of the
storage system tested. The product of the harmonic mean of
the bandwidth and IOPS measures generate a single, overall
number to represent the ranked balance.

Representative: a suite of benchmarks should represent
typical workloads observed on real systems. This includes well
tuned and optimized but also interactive, naive and unoptimiz-
able workloads. We harness IOR, mdtest, and standard POSIX
find to assess system performance representing optimized
sequential and random I/O and metadata workloads. While
none of these are perfect, they can be made to perform well
for both “easy” and “hard” configurations.

Understandable: meaningful metrics should be generated
for systems. At best, metrics are meaningful for data center
staff and users. Variability should be low, thus, repeated
measurements should achieve similar results. We use 1/O
bandwidth in GiB/s or thousands of I/O operations per second
(k-IOPS) for each individual benchmark run. In addition to the
composite score, the individual values are retained and can be
examined for a more nuanced view.

Scalable: it shall run at any scale on a large-scale computer
and some storage systems. The resulting metrics should be
assessed according to the number of client/server nodes used
and processes per node.

Portable: the benchmark should cover various storage tech-
nology and non-POSIX APIs. Our core benchmarks use the
AIOR interface from IOR that supports several backends. We
will continue to extend and port other POSIX code from
the benchmark suite to it. During testing, we faced incom-
patible options in standard command line tools and within
Python wasting user’s time. Shell scripting to sequence the
benchmarks turned out to be error-prone prompting a more
portable, easily configurable approach. We now are working
on a C-version of the benchmark code that does not rely on
external tools but still links library versions of mdtest and
IOR. The C-API across systems is not without challenges. For
example, Cray’s DataWarp does not support the d_type flag
within readdir (), the stat () call on the Earth Simulator
needs two more arguments; it also provides another low-level
timer function.

Inclusive: optimizations available on individual storage
technology, like the GPFS find that searches the database,
are allowable. Vendors are keen to use these features or
they will be reluctant to support submission of benchmark
results. The suite honors that by enabling extensions to IOR’s
AIORI and integration of alternative find implementations.
From the high-level, the overall access patterns cannot be
changed but we will work on extensions to the covered metrics
that complement the current space. However, all changes must
be submitted to the public benchmarks and cited in the results
submitted to ensure propagation of best practices.

Lightweight: runtime of the benchmark should be in the
order of minutes with easy setup and tuning possible. This
should reduce the costs of running the benchmark to allow
a comprehensive list. For a valid run, the creation/write
phases of individual benchmark must be configured to run
for at least 5 minutes; read only operations can go faster. To
simplify meeting this requirement, we improved the existing
stonewalling option in IOR to ensures that all process write
the same amount of data (preserving stragglers as a bulk
synchronous application would see). A stonewall option for
mdtest is in the incubator. Since 5 minutes per hour is
a typical platform acquistion performance requirement for
checkpoint/restart write operations, the community agreed it
is the best option to address cache flushing and keep the tests
realistic.

Trustworthy: Experts must trust the benchmark results and
it should prevent (unintended) cheating. A submission to the
I0-500 requires revealing all tunings made. These will be
shared as part of the results giving insights for others to
understand and potentially benefit from the experiments by
adapting useful options.



