The Data Accelerator

University of Cambridge IO500

Data Accelerators Workflows and Features

- Stage in/Stage out
- Transparent Cashing
- Checkpoint
- Background data movement
- Journaling
- Swap memory

Storage volumes - namespaces - can persist longer than the jobs and shared with multiple users, or private and ephemeral.

POSIX or Object (this can also be at a flash block load/store interface)

Use cases in Cosmology, Life Sciences -Genomics, Machine learning workloads, Big Data analysis.

Ref. https://glennklockwood.blogspot.com/2017/03/reviewing-state-of-art-of-burst-buffers.html

•

Each DAC uses an internal SSD for the MGS should it be elected to run a file system.

NVMeS then have an MDS or OSS applied. This arrangement can be changed as required.

24 Dell EMC PowerEdge R740xd **2 Intel Xeon Scalable Processors 2 Intel Omni-Path Adaptors** Each with 12 Intel SSD P4600 ¹/₂PB of Total Available Space

Integration with SLURM via flexible storage orchestrator

SLURM DAC Plugin

- Reuses the existing Cray plugin.
- Cambridge has implemented an orchestrator to manage the DAC nodes.
- Go project utilising ETCd and Ansible for dynamic automated creation of filesystems
- To be released as an OpenSource project.

Integrating Lustre for the Data Accelerator

Ansible Enabled Lustre Install

```
ansible-playbook test-dac-lustre.yml -i test-inventory-lustre --tag format --tag reformat_mgs
ansible-playbook test-dac-lustre.yml -i test-inventory-lustre --tag stop_all,unmount,client_unmount
ansible-playbook test-dac-lustre.yml -i test-inventory-lustre --tag format
```

```
ansible-playbook test-dac-lustre.yml -i test-inventory-lustre --tag stop_mgs
ansible-playbook test-dac-lustre.yml -i test-inventory-lustre --tag reformat_mgs
```

```
*test-inventory-lustre
dac:
  children:
    fs1:
      hosts:
        dac1:
          fs1_mgs: nvme0n1
          fs1_mdt: nvme1n1
          fs1_osts: {nvme2n1: 2}
        dac2:
          fs1_osts: {nvme3n1: 1}
      vars:
        fs1_mgsnode: dac1
```


ansible-playbook test-dac-lustre.yml -i test-inventory-lustre --tag mount,create_mdt,create_mgs,create_osts,client_mount

```
*test-dac-lustre.yml
```

- name: Setup buffer for fs1 hosts: fs1 become: yes roles: - role: lustre vars: fs_name: fs1

Multirail Lustre

- Set up the ARP and Linux Kernel Routing before enabling multirail
- #Setting ARP so it doesn't broadcast (Do this for every IB interface) sysctl -w net.ipv4.conf.all.rp_filter=0 sysctl -w net.ipv4.conf.ib0.arp_ignore=1 sysctl -w net.ipv4.conf.ib0.arp_filter=0 sysctl -w net.ipv4.conf.ib0.arp_announce=2 sysctl -w net.ipv4.conf.ib0.rp_filter=0

Multirail Lustre

- Set up the ARP and Linux Kernel Routing before enabling multirail
- ip neigh flush dev ib0 ip neigh flush dev ib1
- echo 200 ib0 >> /etc/iproute2/rt_tables echo 201 ib1 >> /etc/iproute2/rt_tables
- ip route add 192.168.0.0/16 dev ib0 proto kernel scope link src 192.168.1.1 table ib0 ip route add 192.168.0.0/16 dev ib1 proto kernel scope link src 192.168.2.1 table ib1
- ip rule add from 192.168.1.1 table ib0 ip rule add from 192.168.2.1 table ib1
- ip route flush cache

- Default ext4/e2fsprocs is a 2 Level htree for 10M files
- Can be increased to 3 levels with large dir option in e2fsprogs 2.14
- add this to mkfsoptions or tune2fs to enable

MDT Large dir for DNE 2

Technical challenges

Problems Discovered

- ARP Flux in Multi-rail networks
- Multicast and Static Routing
- Lustre patches to bypass page cache on SSD (If using SSD for lustre use 2.12)
- BeeGFS multipal filesytem organisation
- Omni-Path errors and original system topology design

*Please email if you're interested in the writeup of solving some of these problems.

Compute Nodes

Who has the MAC Address of 10.47.18.1?

Compute node A

10.47.18.1 its at 00:00:FA:12

Who has the MAC Address of 10.47.18.1?

Compute node B

10.47.18.1 its at 00:00:FB:16

ARP Flux

Storage Multi-Rail Nodes

I have 10.47.18.1 Its at 00:00:FA:12

IB0 10.47.18.1

I have 10.47.18.1 Its at 00:00:FB:16

IB1 10.47.18.25

Multi-Rail node A

Fixed if setting up Multi-rail as per previous slide

Cumulus OPA Interconnect Topology

*

Each Level is 2:1 Blocking with the exception of the **DAC (1:1)**

* Wilkes II (Not shown) **Connects via LNET routers to** access storage only

Fat Tree Static Routing

- All nodes take the same Inter Switch Links(Red)
- Other Links are Posible(Gold)

Adaptive Routing

- Nodes can now take alternate routes (Gold, Purple)
- Utilisation of Inter switch links improved

Diagnosing in Intel Omni-Path

		<u> </u>			2.12.0		- , -
Group	Focus: All	L G	rpNum	Ports:	4015	NumPo	orts
$I \times$	Util-High	LI	Dx	Port	Node	GUID	Эх
Ο	0.0	0113	46	00117	501020	D8FAA	opa
<->	84.6	04B3	3	00117	501020)F29B1	opa
1	0.0	0113	15	00117	501020	D8FAA	opa
<->	74.8	0190	3	00117	501020	D8F8D	opa
2	0.0	04B3	25	00117	501020)F29B1	opa
<->	70.0	04D2	19	00117	501020	D805E	opa
3	0.1	0113	11	00117	501020	D8FAA	opa
<->	67.4	04AE	3	00117	501020	F4147	opa
4	57.4	005A	3	00117	501020	C57AF	opa
<->	0.1	0113	30	00117	501020	D8FAA	opa
5	0.0	04D2	14	00117	501020	D805E	opa
<->	51.9	⊙4FB	1	00117	501010	DBA30	dac
б	0.0	0190	41	00117	501020	D8F8D	opa
<->	51.4	01A9	37	00117	501027	702B0F	opa
7	0.0	04AE	9	00117	501020)F4147	opa
<->	49.9	⊙4Вб	33	00117	501020	C47F7	opa
8	0.0	018B	11	00117	501027	02978	opa
<->	49.8	04AE	36	00117	501020)F4147	opa

Quit up Live/rRev/fFwd/bookmrked Bookmrk Unbookmrk ?help | sS cC NO-n PO-n:

10 Number: 10 NodeDesc sw-fr16-u40 asw-dr20-u35 asw-fr16-u40 asw-dr20-u30 asw-dr20-u35 asw-dr19-u42asw-fr16-u40 asw-dr20-u42asw-dr20-u33 asw-fr16-u40 asw-dr19-u42:-e-13 hfi1_1 asw-dr20-u30 asw-dr19-u41 asw-dr20-u42asw-dr19-u42asw-fr16-u38 15w-dr20-u42

 Example of opatop during a test. Can highlight oversubscribed links based on the percentage utilised.

Topology Problems

- The speed at which the SSDs can achieve forces changes away from placement of traditional disk systems.
- DAC nodes are now in place with compute nodes.
- If out on an island, static routing hurts performance, and can be relieved with adaptive routing.

Performance on Cumulus

- for 184 Nodes 32 ranks per node (5888 MPI Ranks)
- implications.

Can reach 500GiB/s Read and 300GiB/s Write on Synthetic IOR

• x25 faster than Cumulus's existing 20GiB/s Lustre scratch

Cambridge would have to spend over x10 to reach the same performance target without considering space and power

10500

Lustre 2.11 on 24 DAC - 8NVMe - with 20 MDT

[SCORE]	Bandwidth	71.4032	GB/s	•	IOPS	352.754	kiops	:	TOTAL	158.707
[RESULT]	IOPS	phase	8	mdtest_hard_delete	389.67	kiops	:	time	333.57	seconds
[RESULT]	IOPS	phase	7	mdtest_hard_read	1618.13	kiops	:	time	96.21	seconds
[RESULT]	IOPS	phase	6	mdtest_easy_delete	50.864	kiops	:	time	365.44	seconds
[RESULT]	IOPS	phase	5	mdtest_hard_stat	2112.23	kiops	:	time	72.16	seconds
[RESULT]	BW	phase	4	ior_hard_read	46.78	GB/s	:	time	81.04	seconds
[RESULT]	IOPS	phase	4	mdtest_easy_stat	247.4	kiops	:	time	91.97	seconds
[RESULT]	BW	phase	3	ior_easy_read	358.561	GB/s	:	time	212.05	seconds
[RESULT]	IOPS	phase	3	find	729.39	kiops	:	time	192.27	seconds
[RESULT]	IOPS	phase	2	mdtest_hard_write	366.946	kiops	:	time	349.35	seconds
[RESULT]	BW	phase	2	ior_hard_write	7.441	GB/s	:	time	509.42	seconds
[RESULT]	IOPS	phase	1	mdtest_easy_write	53.451	kiops	:	time	352.43	seconds
[RESULT]	BW	phase	1	ior_easy_write	208.252	GB/s	•	time	365.1	seconds

Further work

- Integration and testing on the live system
- Testing UK Science. Working with DiRAC to evaluate the impact on their workloads.
- Filesystem tuning and I/O Job monitoring
- General Release for all as a resource on Cumulus and as an Open Source solution.

Paul Calleja Wojciech Turek **Stuart Rankin** John Garbutt Jeffery Salmond **Dominic Friend** Joe Stankiewicz Matt Raso-Barnett Paul Brown John Taylor **Sean McGuire**

Comments?

Alasdair King <u>ajk203@cam.ac.uk</u>