10-500

John Bent, Julian Kunkel, Jay Lofstead
Seagate, DKRZ, SNL

Why do we need an I0 5007?

Storage researchers need an 10 500

Users need an I0 500

“I run my job on a new machine and I get X GB/s. Is that expected?
I google the machine and I see that the storage is rated at 1 TB/s.
Do I need to spend time tuning my I0?”

Admins need an I0 500

“Users always ask me what I0 patterns they should use for good
performance. I have no idea.”

Procurers need an I0 500

“I wrote a bad benchmark specification in my RFP and ended up with
a bad storage system.”

seagate gov john bent. I0508

What will the I0 500 accomplish?

Bound expectations
A mix of the best and the worst I0 patterns

Force honesty
Best and worst numbers are published for all to see

Create balanced focus on metadata and data
HPC has been over-emphasizing bandwidth for too long

Discover best practices and share with entire community

Submitters configure their own parameters for best
These parameters and other tuning are published

Today’s Two Topics

1. Benchmark Rules and Process

a. Specific tests and parameters
b. Submission rules
C. Scoring

2. Community Rules and Process
a. Committee membership
b. Decision making process

Top 500 Lists key requirements

* Easy to run
* not a lot of different tests
e can be run in under an hour (ideally)
* easy to configure tests

* Single number for initial comparison
* but keep detailed information for more nuanced comparison

|O-500 Proposal

* Use IOR and mdtest in an “easy” and “hard” setup

 Easy is site chosen to best reflect potential optimal cases—but parameters
chosen must be shared so others can examine what is done

* Hard is pre-defined to really tax the system (unoptimized applications)

* Then do a ‘find’ operation
* Custom tools are fine so long as functionality is the same

* At least 5 minute run time for for the write/create phase
* Then how ever long read/stat takes

* Must use the same number of ranks for all tests

* Prefer users to submit results for each storage subsystem
* e.g., burst buffers and PFS are two separate runs

Single consolidated LANL github

Nathan Hjelm has merged mdtest and IOR into LANL github
No more #ifdef’s in mdtest!
They share the very nice IOR function pointer table

Add a new backend just once and it works for both
https://github.com/IOR-LANL/ior

&l & GitHub, Inc. [US] https://github.com/IOR-LANLfiorfcommit/4240bc3

Signed-off-by: Nathan Hjelm <hjelmn@lanl.gov>

"_" hjelmn committed 13 hours ago 1 parent 4a27aZza commit 4248bc37725728T6ed/3edB45d5datdb4923d4748

Showing 3 changed files with 11 additions and 2 deletions. Unified | Split

2 Em META View v
@ -1,3 +1,3 @@
Package: ior
=Version: 3.8.1
+Version: 3.8.2
Release:; @
9 EEmEE MEWS View W
@2 -0,0 +1,9 @@
+I0R MNEWS
+======
4

+Last updated 20817-06
&4

+3.8.2

+*

+= I0OR and mdtest now share a common codebase. This will make it easier
+run performance benchmarks on new hardware.

Processing Steps

* Do all 4 write tests and then all 4 read tests to ensure flushed caches
* |OR easy
* mdtest easy
* |OR hard
* mdtest hard
* ‘find’ operation

* Consumers consume data that was produced on different nodes

produce phase

bndwl = ior easy write
10opsl = mdtest easy create
timer = get time

bndwZ2 = ior hard write
iops2 = mdtest hard create

consume phase

bndw3 = 1or easy read
10ps3 = mdtest easy stat
bndwd = ior hard write

10ps4 = mdtest hard stat

find phase
iops5 = find . -name *00* -newer timer

calculate score

bndw = geo mean(bndwl bndw2 bndw3 bndwéd)

iops = geo mean(iopsl 1ops2 1ops3 1ops4d 10psd)
score = bndw * iops

Open Questions / TODO

1. 10R hard is N-1 strided or N-1 random offsets
a. If random, validate it works. Might need to add a -random_seed parameter.

2. mdtest needs to shift reader ranks
a. IOR has this built-in, mdtest does not

3. Run mixed workloads concurrently
a. Need this for both IOR and mdtest?
b. Do this within IOR/mdtest or simply by running two concurrent MPI jobs?

Proposed webpage at http://io500.org
(hosted by Virtual Institute for 10)

Site System Score Bandwidth (TB/s) IOPs (Millions) Capacity (PB) Submission
Date
LANL Trinity - BB 6.82 3.1 2.2 4 ' 08/08/2017
LANL Trinity - PFS .99 0.9 1.1 80 | 08/08/2017

Show More Entries Advanced Search Show More Columns

Advanced search allows filtering and sorting on arbitrary operations on arbitrary columns (e.g. bandwidth1/capacity)
Other metrics that we hope to include in full view are media type (e.g. SSD), RAID level (e.g. erasure), etc.

http://io500.org

Community Rules and Process

Initial Steering Committee

* John Bent, Julian Kunkel, Jay Lofstead

* Decisions based on consensus after open discussion on mailing list
e After 10500 is established and running smoothly, committee
membership can be revisited by full community

Benchmark Submission and Rules

* Use the community github repo’s for benchmark codes

* For ‘easy’ tests, can modify benchmark to add custom backend but
must submit all modifications with results

e Submit results along with all necessary reproducability information

Might Change Metrics in Future

* Initial proposal for md-real-io instead of mdtest
e Offers more of a workflow-centric model

* Need to generate peer-reviewed publications to establish this as a new, standard
benchmark (targeting PDSW-DISCS@SC17 and IPDPS 2018)

* Need to see this requested in more RFP’s

* Some ask for application 10 kernels representative of different applications
* Since such variety, IOR is the general representative

* For sites with predominantly specific workloads, adding 10 kernel results can be used to
advertise (or re-sort list) for users to determine which platform is the best.

* Need to incorporate these into the metrics so that users can sort.
* Initial list will be IOR and mdtest since they are widely trusted.

Resulting number

* Geometric mean of the 4 bandwidths
* Total data size is determined during write

e Geometric mean of the 5 IOPs
* Total metadata entries determined during create phase
* Product of these two numbers

* total size is determined during write
 total metadata entries determined through create phase

* Example for DKRZ:

* [Need the numbers here to show]

BACKUP SLIDES

mdtest parameters

*easy is a 0 byte file
mdtest-nmy test-u-L-N1 -b1-e0-i1-w0

* hard is 3900 byte file (avoid data to be stored on metadata server)
mdtest-n my test-u-L-N1 -b1-e3900-i1-w 3900
-n my_test is how much to create and unlink in 10 minutes total.

-N 1 adds the stride of 1 process between tests
e.g., assumes cyclic placement of processes.

-L files only at leaf mode
-u one unique directory per process (-b 1)
-e -w controls bytes

IOR parameters for HARD

setup

mpirun -np my_test -ppn 1 ./IOR-A 1 -a MPIIO -vv -w -F -u -o data e -k -b 8192M -t 4K -i 60 -m

duplex read test:

e mpirun —np my_test—ppn 1./IOR-A 1 -a MPIIO -vv -w -F -u -o data_bg -z -k -b 65536M -t 4K -i 30

* mpirun —np my_test —ppn 1./IOR-A 1 -a MPIIO -vv -r -F -u -0 data -z -k -b 8192M —t 4K -i 60 —m
duplex write test:

* mpirun —np my_test—ppn 1./IOR-A 1 -a MPIIO -vv -r -F -u -0 data_bg -z -k -b 65536M -t 4K -i 30 -m
* mpirun —np my_test —ppn 1./IOR-A 1 -a MPIIO -vv -w -F -u -o data -z -k -b 8192M -t 4K -i 60 —-m

Detailed Run Instructions

* N-1 strided 47KiB
 jor -write {HARD} -fileset f1

* 3900 byte files, single directory
* md-test -write {HARD} -fileset {2

* User’s choice (but must specify what is done)
* jor -write {EASY} -fileset f3

*0 byte files, 1 per directory
* md-test -write {EASY} -fileset f4

Detailed Run Instructions

* N-1 strided 47KiB
* jor -read {HARD} -fileset f1

* 3900 byte files, single directory
* md-test -read {HARD} -fileset 2

* User’s choice (but must specify what is done)
* jor -read {EASY} -fileset f3

*0 byte files, 1 per directory
* md-test -read {EASY} -fileset f4

md-real-io Parameters

md-real-io -O=1 -m=1000 -D=1 -P=10000 -- -D=/tmp/test
-O=1 shift rank by one

-m limit free memory per node to 1 GByte

-P Number of files to precreate

-D=1 use one directory per rank

if to use the phases, use -1 (for create) -2 (for test) or -3 (for delete)

Some Early Results on KAUST

md-real-io -O=1 -D=1 -P=1000 -- -D=<Burst Buffer!>
1024 nodes: 19,000 obj/s 141.6 Mib/s

* Creates: 50,000/s, 185 MiB/s
* Deletes: 60,000/s

md-real-io -5=$((100*1024*1024)) -0=1 -D=1 -I=10 -P=10
* 3000 obj/s 600 GByte/s !
mdtest

 numbers on 1024 nodes: (Georgios explains): 17689, 69758, 52093,
70653

